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Discrimination 

"To note the differences between. To  set apart as different; differentiate; 
distinguish. To observe a difference; distinguish. To  make a distinction; 
treat unequally or unfairly." These are the ordinary meanings of dis- 
criminate. Traditionally, in psychophysics, it has had a special meaning 
which we take up first; later, in Sec. 5, we consider experiments in which 
the responses are more nearly coordinate with the dictionary meaning. 

In many early discrimination experiments the stimuli differed on only 
one physical dimension, and the subject judged not only whether the two 
stimuli of a presentation differed but which he believed to  be the larger, or 
more intense, etc. Thus his possible responses were "larger," "same," 
and "smaller," or something equivalent. Later studies deviated even 
more from the usual meaning of discriminate in that the "same" response 
was omitted, for evidence accumulated that subjects were quite unstable 
in their definition of that category (Thompson, 1920; Boring, 1920). 
When the only permitted responses are "larger" and "smaller," or the 
like, we call it a forced-choice procedure-"forced" because the subject is 
not permitted to say that two stimuli are the same, even when they are or 
seem to be. The models we discuss first are designed to account for 
forced-choice data. 

The exact responses used, words or other signals, depend upon how the 
experiment is implemented, but there must be just two when pairs of 
stimuli are presented and they must be unambiguously related to  the physi- 
cal characteristics of the stimuli. For example, if one stimulus is presented 
after the other, then the subject can be asked to  designate whether the 
first or the second is the larger or, equivalently, whether the second is 
larger or smaller than the first.4 If the stimuli, for example, color 
patches, are presented simultaneously, then spatial designations such as 
"up" and "down" or "right" and "left" are used or the patches are 
labeled 1 and 2 or A and B, etc. In any event, a label that is unambiguous 
to both the subject and the experimenter is used. 

In terms of the notation described in Chapter 2, we have a set 9 com- 
posed of stimuli that are assumed to differ on only one continuous physical 
dimension. This dimension can be anything we choose-mass, energy, 
frequency, etc.-as long as there is a physical measure that defines a weak 

The logical equivalence of these responses does not imply that two experiments which 
differed only in this way would yield identical data. See pp. 194, 224 IT. 
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ordering 2 over Y, that is, > must be a connected, reflexive, and transitive 
binary relation. In the following we shall say that a is "larger than" a' 
if a > a' under the given physical ordering. In the simplest case the 
presentation set S is a subset of Y x Y, and the abstract response set R 
is simply (1, 2) (or any other pair of symbols). If we let 

I ,  = {(a1, a2) I al, a2 E Y and a1 > a2) 

I2 = { (a1 ,  a 2 )  I el, a2 E Y and a2 > a'), 

then the identification function is 
l(1) = Il 

42) = 12. 

This, as we pointed out in Chapter 2, is an example of a partial identi- 
fication experiment. 

The most inclusive two-alternative, forced-choice design is called 
pair comparisons, and it is characterized by S = Y x Y. If Y consists of 
k stimuli, a total of k2 ordered pairs can be formed. For example, when 
Y = {a, a', a"), then there are the nine ordered pairs: (a, a),  (a, a'), 
(a, a"), (a', a), (a', a'), (a', a"), (a", a), (a", a'), (a", a"). To say 
that the first stimulus is larger than the second when (a, a') is presented 
seems to be equivalent to saying that the second is larger than the first 
when (a', a )  is presented, and so one might be tempted to present only 
one of the two pairs. It is not, however, empirically true that the results 
are the same: the order of presentation affects the behavior. Just how it 
affects behavior is a question we study later; at present we need only 
realize that it does. 

For an interesting number of stimuli, say 10 to 100, there are quite a few 
ordered pairs, 100 to 10,000. What makes these numbers unpleasant is 
that it is insufficient to present each pair just once, for subjects do not 
always respond the same way each time a pair is presented. To get 
reasonably stable relative frequencies of these choices, we must present 
each pair many times-"many" being of the order of 100 to 1000. Thus a 
modest pair comparison experiment entails 10,000 observations and a 
big one, 10 million. The need to reduce these numbers, at least the second 
one, is evident. 

The clue to doing so lies in the fact that inconsistencies exist only when 
two stimuli are physically not very different-just what we mean by "not 
very different" will become clear later. There is surely little point, then, 
in presenting pairs hundreds of times when the response is certain. This 
suggests that we pick one or more stimuli, which are called standards, and 
study only pairs formed from other stimuli, called comparison stimuli, in 
the near neighborhood of each standard. A standard stimulus has, 
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therefore, its own set of comparison stimuli. Usually, though not always, 
the standard is presented first, and a comparison, second, and the subject is 
asked to judge whether the second is greater or less than the first. Al- 
though it is not necessary, in most studies an odd number of comparison 
stimuli are used, with the physically middle one often being identical to  the 
standard. This type of design is known as the method of constant stimuli, 
although a more appropriate name seems to be the "method of standard 
stimuli." 

1 .  RESPONSE M E A S U R E S  AS F U N C T I O N S  
O F  S T I M U L U S  MEASURES 

1 . 1  The Psychometric Function 

So that subjects are not free to indulge their taste for consistency-which 
most seem to have-we are careful in most constant stimuli experiments 
not to group all like presentations together. Some irregular presentation 
schedule, often a simple random one, is used. When it comes to data 
analysis, however, we want to deal with the responses to each pair as a 
unit, and so from now on our problem is to  account for these sets of 
responses to presentation pairs. 

Changing notation slightly, let x denote the numerical value of the 
relevant physical dimension of a typical comparison stimulus and s, the 
numerical value of the standard. Suppose, to be specific, that each (s, x) 
pair is responded to  100 times. It will surprise no one that, when x is 
sufficiently smaller (on whatever physical variable differentiates them) 
than s, then all or almost all of the subject's responses are that it is smaller. 
He is equally correct when x is sufficiently larger than s. As we move up 
the series of comparison stimuli from the smallest to the largest, we find 
that his reports first decrease in consistency, reach a peak a t  which roughly 
half his responses are that the comparison stimulus is larger, and then 
become increasingly more consistent until he always says that it is larger. 
What is interesting is the patterning to the inconsistency: the proportion 
of "larger" responses changes rather smoothly from 0 to I. 

TO see this, we may plot the proportion as a function of the physical 
measure of the stimulus. Although we could plot the physical measure as 
the independent variable, it is more usual to use either the dimensionless 
linear scale (x - s)/s or the dimensionless logarithmic scale log (XIS) = 

log x - logs. Both have the virtue of setting the zero a t  s, which is 
sensible because we are studying the neighborhood of s. A typical data 
plot is shown in Fig. 1. 
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Fig. 1. Loudness discrimination data (E. Galanter, unpublished). Each data point is 
based upon 105 observations collected over three sessions. The standard stimulus was at 
50 db re 0.0002 dynes/cm2. 

The S (or sigmoidal or ogival) shape of these points is typical of dis- 
crimination data, as are the slight irregularities. Were we to introduce 
another comparison stimulus between two actually used, we anticipate 
that the new proportion would usually fall between the two old data 
points, approximately on a smooth S-curve faired to the original data 
points. Of course, we cannot be sure exactly where it will fall. In two 
different runs of 100 observations we do not generally get exactly the same 
proportions, but we would be surprised if they were very different from 
each other or from the faired curve. And data confirm such conjec- 
tures. 

These considerations lead us to postulate that for each value x, x > 0 
of the comparison stimulus and for each s, s > so > 0 there exists a 
probabilityp(2 I (s, x)) governing the response that x is judged larger than 
s. Clearly, p(1 1 (s, s)) = 1 - p(2 I (s, x)). The number so is interpreted 
as a thresholdlike quantity, somewhat larger than the usual absolute or 
detection threshold. Moreover, we postulate that these probabilities 
satisfy : 
Assumption I .  Strict Monotonicity: if x < y, then p(2 I (s, x)) 9 

p(2 1 (s, y)), and, when p(2 ( (s, x)) and p(2 ( (s, Y)) # 0 or 1, then 
p(2 I ($9 x)) < p(2 I (s, Y)). 
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Assumption 2. Dlfferentiability: p(2 1 (s, x)) is a diferentiable and, 
therefore, continuous function of each of its arguments x and s except, 
possibly, at ajinite number ofpoints. 

Assu m ption 3. Limiting behavior: 

lim p(2 I (s, x)) = 1 and lim p(2 I (s, x)) = 0. 
z- m 2-0 

Such a function, assuming that it exists, is called a psychometric,function 
(Urban, 1907). 

The usual and unbiased estimate ofp(2 I (s, x)) is the proportion of times 
that the subject responded z is larger when the pair (s, x) was presented. 

The reader should be fully aware that these three assumptions about the 
psychometric function are not easily tested. The inherent binomial 
variability of the data means that the observed proportions can have the 
opposite order from the actual probabilities and that they can be rather 
widely separated when the probabilities are actually quite close. A 
numerical example is revealing. We know that when N independent 
observations are made, each with probability p of success, then the 
expected proportion of successes is p and the-standard deviation of the 
proportion is Jp(l - p)/N. If p = 0.50 and N = 100, the standard 
deviation is 0.05. I fp '  = 0.55, the standard deviation is nearly the same. 
Therefore, we should not be unduly surprised to observe proportions of 
0.56 and 0.53, respectively, which is an apparent violation of mono- 
tonicity, or of 0.43 and 0.59, which might suggest a violation of continuity. 
Only by very careful experimentation and statistical analysis can one 
detect such violations, unless they are quite gross, which they are not. 
In the absence of contrary evidence, experimental or theoretical, mono- 
tonicity and continuity seem to be sensible assumptions. 

1.2 The PSE, CE, and jnd 

Let p,(2 I (s, y;) be the partial derivative ofp(2 I (s, y)) with respect to ?I, 
which by Assumption 2 exists. Thus 

where the constant of integration is 0 by Assumption 3. The monotonicity 
assumption implies 

p,(2 ( (8, xj) >, 0, 
and Assumption 3 implies 
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Fig. 2. Typical plots ofp,(2 ( (s, x ) )  versus (x - s)/s and of its cumulative ~ ( 2  / (s, z)) 
versus (x - s)/s. The density function is normal and its cumulative is, in this context of a 
psychometric filnction, often called a normal ogive. 

Thus p, is a probability density function and p is its distribution function. 
Moreover, p is an S-shaped function if and only if p, is unimodal. An 
example of this relation is shown in Fig. 2. 

Two important features of a density function, especially a unimodal one, 
are a measure of central tendency, such as the mean or median, and a 
measure of dispersion, such as the standard deviation or the interquartile 
range. In discrimination studies it has been customary to use the median 
and interquartile range rather than the mean and standard deviation 
because the former pair makes weaker assumptions about the metric 
properties of the independent variable (Urban 1907, Boring 1917). 

The median, x ~ ,  of the distributionp, is by definition that point such that 
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half the area under p, lies to the left of it. Because the total area is 1, this 
means that x ? ~  is characterized by 

~ ( 2  I ( s ,  ~ $ 4 ) )  = jOzlip,(2 I ( s .  y ) )  d y  = (. (1) 

In the discrimination context, 2% is often called the point of subjecti~e 
equality and is abbreviated PSE. As we noted earlier, order of presentation 
matters, so in general x # s. The difference, x,:  - s ,  is called the ? 
constant error, or  CE, whlch is in a way a misnomer because it can be 
altered by certain experimental manipulations. 

The interquartile range is the interval xM - x,,,, where x , ~  is the stiniulus 
value above xb6 such that & of the area under p, lies between these two 
points and x5$ is the corresponding point below x ? ~ .  More succinctly, they 
are defined by 

p(2 I ( s ,  x,,)) = 2 and p(2 1 ( s ,  2%)) = 1. 

Most often, psychophysicists work with half the interquartile range, that 
is, 

which is called the just noticeable d~ference  or  the d~ference  linzen (DL). 
We use the first t e r m . V h e  jnd is really an algebraic approxiniatioii to a 
probabilistic structure, as was first emphasized by Urban. We go into its 
structure as an algebraic entity in Sec. 3.3. 

Graphically, the several quantities just defined are shown in Fig. 3. 
I t  should be realized that the cutoffs of $ and : in the definition of the 

jnd are arbitrary; other values, T and 1 - T, where $ < T < 1, could 
have been used, and we would speak of the T-jnd a t  s .  When the value of 
T is not specified, it is taken for granted that it is 2.  

1.3 Estimating the  PSE a n d  jnd 

T o  estimate the PSE and the jnd when the mathematical form of the 
psychometric function is known, it seems appropriate first to  find that 
function of the given class which gives the "best" fit to  the data and then 
to  calculate these quantities according to these definitions. Various 
definitions of "best," such as least squares and maximum likelihood, can 

Classically, the jnd and the DL were distinguished as a theoretical term and a statistic 
of data. respectively. However they are now often used interchangeably, and so we 
adopt the first term to  refer to the statistic because of its mnemonic value. 
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Stimulus magnitude in physical units 

Fig. 3. A typical psychometric function [p(? / (s, 1:)) versusz] showing the CE and thejnd. 

be used, and solutions are known for certain classes of functions (see 
Chapter 8). In practice, however, these calculations are usually tedious, 
and a rather simpler procedure can be used, which, although not optimal, 
seems quite satisfactory for many purposes. 

The data uniformly suggest that the psychometric function is very 
nearly a straight line in a region approximately one jnd, or a little more, 
above and below the PSE. So, instead of using a more precise psycho- 
metric function, we may calculate a best-fitting straight line to those data 
points between about 0.2 and 0.8; usually a least squares procedure is 
used, although with practice one can become quite skillful doing it 
graphically by eye. If the equation of this line is p = az + b, then it is 
easy to see that 

and that 

Thus the jnd and the slope are inversely related: good discrimination 
means a small jnd and a large slope; poor discrimination, a large jnd and a 
small slope. 
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1.4 Study of the jnd : Weber functions and Weber's law 

The psychonletric function tells us something about local behavior, 
namely, about the nature of discrimination in the neighborhood of the 
standard s. One can ask: how does this function vary with experimental 
manipulation, with, among other things, changes in the standard ? Because 
it is difficult to describe how an entire function varies, the question is 
usually reduced to asking how the CE and the jnd vary with experimental 
conditions; however, somewhat different questions are posed in the two 
cases. In this section we take up the jnd and postpone discussing the CE 
until Sec. 4. 

Of two techniques to determine the jnd, the one giving the smaller value 
is considered the better, for the primary interest has been the absolute 
limits of discrimination. For this reason, modifications of equipment, 
instructions, outcomes, or procedures are deemed desirable and are in- 
corporated into the experiment if they reduce the size of the jnd, but for the 
most part their effects, as such, upon the size of the jnd are not studied. 
This does not mean that such questions are meaningless or even uninterest- 
ing but only that other problems have seemed more important. This 
leaves us only one major manipulation for studying the jnd, the value of 
the standard stimulus. A 

If we estimate the jnd at s, jnd (s), for several different values of s, we 
may then construct a plot such as that shown in Fig. 4. Actually, it is not 
easy to find reports of jnds estimated at different values of s using the 
method of constant stimuli. For example, the data of Fig. 4 (Miller, 
1947) for the intensity of random noise were obtained by the quanta1 
method described in Sec. 6.3 of Chapter 3, with the jnd being defined as 
that increment in intensity which is detected 50 per cent of the time. The 
curves shown in Fig. 6 below were obtained by the method of limits in 
which the variable stimulus is systematically increased and decreased until 
a difference is found that is noted 50 per cent of the time. Most experi- 
mentalists assume that, aside from a constant factor, the same function 
would be obtained by the method of constant stimuli or by one of the 
other, somewhat more convenient methods, but this assumption has yet 
to be adequately checked. For present purposes, we will assume that it 
is correct. 

The regularity of the data points in Fig. 4 suggests that a continuous, 
monotonically increasing function underlies them. This function we 
denote by jiid (s) and call it the jnd-function (of the stimulus variable). 

Such functio~ls were first studied by E. H. Weber in the second quarter 
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Fig. 4. Intensity discrimination of random noise for two subjects using the quanta1 
method. The jnd is measured in dynes/cm2 and is plotted on a logarithmic scale. The 
stimulus is measured in so-called sensation level units which is decibelsresubject's threshold 
(which is approximately 10 db  re 0.0002 dynes/cm2). Adapted by permission from Miller 
(1947, p. 612). 

of the nineteenth century for cutaneous sensitivity discrimination. On 
the basis of his data, Weber suggested that for intensity variables, at least, 
the jnd-function is of the form 

jnd (s)  = Ks, (3) 
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where the constant K > 0 is called the Weberfraction and the proposed 
empirical relation is called Weber's  la^^. Usually one plots the data as 
A 
jnd (s)/s versus s or log s, in which case the points lie on a horizontal line K 
units above the x-axis when Weber's law is correct. Actually, most data 
show an initial drop, then a relatively flat region, and sometimes a final 
rise for very "large" stimuli (Cobb, 1932, Holway & Pratt, 1936). The 
final rise has been debated, and some believe that it can be accounted for 
by difficulties in the experimental procedure or equipment, but there is 
little doubt about the initial dip. 

To cope with the dip, Fechner proposed and G. A. Miller (1947) later 
revived a generalized Weber's law of the form 

jnd (s)  = Ks + C, (4) 

where K > 0. In Fig. 5 Miller's jnd-data for intensity discrimination of 
white noise are shown along with a fitted curve of the form of Eq. 4. The 
approximation is good. 

Guilford (1932) proposed as a substitute for Eq. 3 or 4, 

jnd (s)  = Ksn, 

I I 1 I I I I I I 
0 10 20 30 40 50 60 70 80 90 100 

Sensation-level in decibels 

Fig. 5. The  data of Fig. 4 are replotted with the jnd measured in decibels, i.e., if at  in- 

tensity I the jnd measured in dynes/cm"s A( l ) ,  therr the jnd in d b  = 10 log,, 

T h e  theoretical curve is the generalized Weber law with the numerical constants shown. 
Adapted by permission from Miller (1947, p. 612). 
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Fig. 6. \.Veber fractions versus sensation-level of the stimulus (in logarithmic units) for five 
senses obtained by the method of limits. The Weber fractions have been normalized to be 
unity at threshold. Adapted by permission irom Holway & Pratt (1936. p .  337). 

Fig. 7. A typical psychometric function showing the values of the Weber functions 
As, 1 - T) and Ajs. T )  at s as well as the CE and the  T-jnd. 
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where n > 0. Hovland (1938) presented data for which this is a somewhat 
better appr-oximation than Eq. 4. Householder and Young (1940) point 
out. however, that the law that holds depends upon the physical measure 
of the stimulus used. Under very general mathematical conditions it is 
possible to find a measure for which Weber's law is correct for a single 
subject, but such a transformation will work for all subjects 011ly under 
very special circumstances. 

Tab le  1 Values of the  Weber  Fraction 
Weber Fraction 

Deep pressure, from skin and subcutaneous tissue, at 
about 400 grams 0.01 3 

Visual brightness, at about 1000 photons 0.01 6 
Lifted weights, at about 300 grams 0.019 
Tone, for 1000 cps, at about 100 db above absolute 

threshold 0.088 
Smell, for rubber, at about 200 olfacties 0.104 
Cutaneous pressure, on an isolated spot, at about 

5 gramslmm 0.136 
Taste, for saline solution at about 3 moles/liter 

concentration 0.200 

Taken from Boring, Langfeld, & Weld (1948) p. 268. 

I t  hardly need be mentioned that such jnd-functions are empirically 
defined only from the absolute threshold up to either the upper threshold, 
as for pitch, or just short of intensity levels that damage the receptors, 
as for sound and light intensity. 

Table 1 presents estimates of the Weber fraction K for several continua, 
and Fig. 6 presents plots of several Weber functions. 

For the theoretical work to follow, it is convenient to use a somewhat 
different measure of dispersion than the jnd. Let T be a number such that 
0 < n < 1. We define the function A(s, n) by the property 

u[3 I (s, s + A(s, n))l = n,  
that is, 

A(s, n )  = xr - S. 

Depending upon the value of T, A(s, n) may be positive or negative. For 
a fixed n ,  we shall call A(s, n) a Weber function of s. 

I t  should be noted that CE = A(s, 4) but that for other values of T, 
A(s, n) is a measure of dispersion. In fact, if the CE = 0, then jnd (s) = 
&[A(s, 2) - A(s, a)], and in general T-jnd (s) = g[A(s, T) - A(s, 1 - T)]. 
(See Fig. 7.) 

N o  one has paid much heed to the fact that the empirically calculated 
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jnd and the Weber functions used in theoretical work are defined slightly 
differently. When, for example, the jnd is found to satisfy the generalized 
Weber law, one usually takes for granted that the Weber function does 
too, that is, 

A(s, n) = K(n)s + C(n). (6) 
But, if this is true, then 

CE = A(s, &) = K(+)s + C(i ) ,  (7) 
which is more than is usually intended. Possibly this CE relation is 
correct-we know of no relevant data-but, if it is not, then, because 
A(s, r )  - CE plays a closer role to the jnd for symmetric psychometric 
functions than does A(s, n), we should assume Weber's law for the former 
and not for the latter. 

2. F E C H N E R I A N  SCALING6 

2.1 The Problem of Scaling 

With the publication of Ekmmte der Psychophysik in 1860, G. T. 
Fechner not only founded psychophysics as a science but introduced a 
theoretical idea which has dominated the field in the intervening years. 
It is this. As the magnitude of stimulation is varied, for example, as the 
sound energy of a tone is varied, we appreciate the change as a closely 
parallel subjective change, in this case in what is called loudness. We say 
that stimulation produces a sensation peculiar to  it, and most of us allege 
that sensations vary continuously and monotonically with the usual 
physical magnitudes involved. They d o  not, however, seem to vary 
linearly: a 10-unit change of intensity at  low levels does not seem to  be 
the same size as a 10-unit change at  high intensities. 

Fechner, and many after him, wanted to  know exactly how "sensation 
intensity" varies with physical magnitude. The problen~ is not one of 
straight-forward experimentation because the question is riot an empirical 
one until we know how t o  define and measure sensation. The question of 
definition, and therefore of measurement, is, we should judge, still un- 
settled and probably will not be finally resolved until psychophysics is a 
more nearly perfected chapter of science than it is today; nonetheless, we 
shall explore a number of different answers that have beell proposed and 
seriously entertained. I t  may be well to  pause a moment here to  sketch 
our general view of the matter, to make our biases known. before we 
discuss the views of others. 

TO [many, the problems of this section are of no more than historical interest. But they 
certainly are that, and so we feel it worthwhile to devote space to their careful analysis. 
If one wishes, the section can be omitted with little loss of continuity. 
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First, it is not clear what behavioral observations constitute a measure 
of sensation. This role has been claimed for one or another class of 
observations, but none has had such clear face validity that it has not 
been vigorously questioned by some careful students of the field. Second, 
although it seems reasonable to suppose that physiological measures of 
sensation may one day be found, little is known about them today. 
Third, in several mathematical theories of discrimination (and other choice 
behavior) it is not particularly difficult to introduce numerical scales that, 
on the one hand, allow us to reconstruct the behavioral data rather 
efficiently and, on the other hand, are monotonically, but not usually 
linearly, related to physical intensity. Fourth, although each of these 
scales is a possible candidate for the unknown measure of sensation, no 
clear criterion for choice yet exists. It is probably unwise for scientific 
purposes (engineering applications are another matter) to attempt to make 
any ternlinological decision until more is known. Aside from a question 
of terms, it is by no means certain which, if any, of these scales is truly 
useful. If a scale serves no purpose other than as a compact summary of 
the data from which it was calculated, if it fails to predict different data or 
to relate apparently unrelated results, that is, if it is not an efficient 
theoretical device, then it is worth but little attention and surely we should 
not let it appropriate such a prized word as "sensation." If, however, a 
scale is ever shown to have a rich theoretical and predictive role, then the 
scientific community can afford to risk the loss of a good word. At 
present, no scale meets this criterion. 

The scales of this section are the most traditional in psychology, and at 
the same time the most unlikely. What we shall be doing is to take highly 
local information, as given by the psychon~etric function, and from it 
attempt to generate scales over the whole range of the physical variable. 
In recent years a school of thought, led by S. S. Stevens, has condemned 
this processing of confusion (or noise or variability) as, on the face of it, 
irrelevant to measures of magnitude. We take up his alternative method, 
magnitude estimation, more fully in Chapter 5; here it suffices to describe 
Fechner's idea. Earlier critiques of Fechner's whole scheme of psycho- 
physics can be found in Cobb (1932), James (1890), and Johnson (1929, 
1930, 1945). 

2.2 Fechner's Problem 

Let a particular value T be chosen and suppose that A(s, T) is the 
resulting Weber function. Fechner posed the question: for what (reason- 
ably smooth) transformations of the physical scale is the transformed 
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s s + A(s, T )  

Stimulus magnitude in physical units 

Fig. 8. A typical monotonic transformation showing the interval on the transformed scale 
corresponding to the value A(s, T )  of the Weber function at s on the original scale. 

Weber function a constant independent of s? This defining property of the 
"sensation" scale is sometimes loosely phrased by saying that a t  the level 
of sensations jnds are all equal. Mathematically, if u(s) is a transformation 
of the physical scale, then in terms of the u-variable the Weber function is 
simply u[s + A(s, n)] - u(s). This is easily seen in Fig. 8. 

Fechner's Problem. For a fixed n, 0 < n < 1, find those "smooth" 
strictly monotonic functions u sucll that for all s > so 

~i,llere g is a strictly monotonic increasing function of n and is independent 
of s. 

Two comments. First, we have explicitly included the vague word 
"smooth," its exact definition to be decided upon later when we see how 
the problem develops. Second, the assumption that g is a strictly mono- 
tonic function follows from the assumption that the psychometric function 
is strictly monotonic for 0 < p < 1. 

Is this characterization of the unknown scale u a self-evident truth, an  
empirical assumption, or  a definition ? Fechner, we believe, believed it to  
be the first or  possibly the second. The era of self-evident truths having 
largely passed, some today regard it as an assumption, and the remainder, 
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a definition (Boring, 1950; Cobb, 1932). Without an  independent 
measure of u, it is difficult for us to see how it can be considered an  
assumption. But no matter, let us accept the problem as it stands without 
worrying about its philosophic status. 

The task Fechner faced was to solve the functional equation (8). The 
method he attempted to use-see Boring (1950) or  Luce & Edwards 
(1958)-involved certain approximations which allow Eq. 8 to be trans- 
formed into a first-order linear differential equation. Such differential 
equations are well known to have solutions which are unique except for 
an additive constant of integration provided that certain weak assumptions 
are met. However, because g(n) is unspecified, the unit of u is also free, 
so by this argument u is an  interval scale (i.e., it is unique up to positive 
linear transformations). Certainly, such reasoning would be acceptable 
had the problem been initially cast as the differential equation, but it was 
not, and for other classes of functional equations one must investigate 
carefully both the questions of the existence and uniqueness of solutions. 
Neither can ever be taken for granted with unfamiliar equations. 

Because n is a fixed quantity in Fechner's problem, we drop it from the 
notation. The following result solves the uniqueness question. 
Theorem I. Let u* be a strictly monotonic solution to Eq. 8; then u is 

another solution to Eq. 8 if and only if 

~jhere F is a periodic fuiiction of period g,  that is, F(x + g)  = F(  X) for 
all x. 

P R O O F .  First, suppose F i s  periodic with period g ;  then by the definition 
of u, 

Because u* is a solution to Eq. 8, we know that 

and because F is periodic with period g 

= F[u*(s)]. 
Thus 

= g, 
as was to be shown. 
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Now, suppose u and u* are both solutions to Eq. 8, and let w = u - u*. 
Then 

W [ S  + A@)] - W(S)  = U [ S  + A(s)] - u*[s + A(s)] - U(S)  + u*(s) 

Because u* is strictly monotonic, its inverse u*-I exists, so we may write 

s + A(s) = u*-I[u*(s) + g ]  
by Eq. 8 and 

s = u*-l[u*(s)] 

by the definition of an inverse. Define F = w(u*-I). Substituting, we have 

0 = W[S  + A(s)] - W ( S )  

= w{u+-'[u*(s) + g ] }  - ~ . { u * - ~ [ u * ( s ) ] }  

= F[u*(s) + g ]  - F[u*(s)]. 

Thus F is periodic with period g,  and 

u = u * + w  

= u* + w[u*-l(u*)] 

= u* + F(u*), 
as was to be shown. 

There is trouble. The class of solutions to Eq. 8 is, according to Theorem 
1, much too heterogeneous to be acceptable as a scale. If, for example, 
u* is a nice smooth function, then u* + F(u*) may be quite a lumpy 
function, such as that shown in Fig. 9. It is difficult to consider these two 
functions as merely two different representations of the same "subjective 
scale." 

We need a recasting of the problem that permits us to narrow down the 
set of solutions to, say, an interval scale. This is not difficult to find. Our 
first phrasing of the problem involved an arbitrary cutoff x. Now, either 
the value of the cutoff is completely inessential or the problem holds no 
scientific interest. If we get one scale for one cutoff, another for a different 
one, and so on, we can hardly believe that some one of these scales has any 
inherent importance, whereas the others have none. So we rephrase the 
problem. 

The Revised Fechner Problem. For ecery n ,  0 < n < 1 ,  find those 
"smooth" strictly monotonic functions u that are independent of ir such 
t'hat for all s > so 

+ A(s, n)l - ~ ( 3 )  = g ( 4 ,  (9) 
where g is a strictly monotonic increasing function of x and is independent 
of s. 
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Fig. 9. Examples of solutions to Fechner's problem that are related by a periodic function. 

Theorem 2. If u and u* are two continuous strictly monotonic solutions 
to Eq. 9, then there exists a constant b such that u = u* + b. 

P R O O F .  By the preceding theorem, we know that 

where F must be periodic with period g ( ~ )  for all T,  0 < T < 1. Because 
g is a strictly monotonic function, F has a nondenumerable set of periods 
which together with its continuity (implied by that of u and u*) means 
that F must be a constant, as asserted. 

Because the unit of u* is arbitrary, Theorem 2 implies that the solutions 
to the revised Fechner problem constitute an interval scale. 

Before turning to some discussion of the existence of solutions, we 
show that the revised Fechner problem is identical to a condition that has 
gone under the lengthy title "equally often noticed differences are equal, 
unless always or never noticed." 

The Equally-Often-Noticed-Difference Problem. Let p(2 1 (s, x ) )  be a 
psychometric function which, for 0 < p < 1, is strictly monotonic in the 
x-argument. Find those strictly monotonic functions h and u, if any, such 
that for all x > 0 and s > so for which p(2 I (s, x ) )  # 0 or 1 
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Theorem 3. The equu11)l-often-noticed-dzflerence problem has a solution 
if and on/j if the recised Fechnerproblem has a solution and both problems 
hare the same set of scales. 

PROOF.  Suppose the Fechner problem has the solution u. For  x and s 
such that p(2 I (s, x)) = n # 1 or  0, we know that z = s + A(s, n )  by the 
definition of the Weber function. Because u solves the Fechner problem, 
u(x) - u(s) = g(n). Because g is strictly monotonic, it has an  inverse 
/I, hence 

h[u(x) - u(s>l = htg(n)l 
= 71 

= p(2 I (s, x)), 

so u solves the equally-often-noticed-difference problem. 
Conversely, suppose u solves the equally-often-noticed-difference prob- 

lem. Let n # 0 or 1 be given; then by definition of 4(s,  n), 

Because h is strictly monotonic, its inverse, g, exists, and so 

g(n) = 4 s  + A(s, ~ 1 1  - 4 4 ,  
as was to be shown. 

2.3  Fechner's Law 

It  is by no means obvious under what conditions the revised Fechner 
problem has a solution and, when it has, what its mathematical form is. 
A variety of sufficient conditions is known, two of which are described in 
later sections and one here. Moreover, a general expression, in terms of a 
limit (but not an  integral, as Fechner thought) is known for the solution 
when it exists (see Koenigs, 1884, 1885, o r  Luce & Edwards, 1958). We 
shall not present it here. 

If the generalized Weber law, A(s, n )  = K(n)s + C(n), is empirically 
correct, then, of course, we are interested in solutions only for that case; 
fortunately, it is quite well understood. 
Theorem 4. I f  thegeneralized Weber law holds, a solution exists to the 

r e~ i sed  Fechner problem provided that C(n)/K(n) is a constant, y ,  inde- 
pendent of n ;  the solution is 

~xhen A > 0 and B are constants. 
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P R O O F .  u [S + A(s, T ) ]  - U ( S )  = U [ S  + K(T)(S + y)] - U ( S )  

= A log [s + K(T)(s + y) + y]  + B - A log ( s  + y) - B 

= A log [ I  + K(T)] .  

Because u is strictly monotonic, and A(s, T )  = K(T)(s + y),  it follows 
easily that A > 0. 

Observe that this restriction C(T) /K(T)  = y is strong: it means that 
A(s,  T )  = K(T)(s + y),  which is tantamount to Weber's original law with 
the origin of the physical variable shifted to - y .  

The logarithmic scale is sometimes called Fechner's  la^,, although it is 
not a law in any usual sense of the term-the scale u is not independ- 
ently defined. Frequently, the set of ideas that we have discussed in this 
section are grouped together as the Weber-Fechnerprobletn, but, as has been 
repeatedly emphasized in the literature, Weber's and Fechner's laws are 
independent of one another (e.g., Cobb, 1932). 

As we turn to later work, we should keep in mind that Fechner attempted 
to establish a scale by demanding that subjective jnds on that scale all be 
equal. In doing this, he made no attempt to specify anything about the 
form of the psychometric function. When, because of uniqueness problems. 
we revised his problem to get rid of its dependence upon an arbitrary 
probability cutoff, it became apparent that solutions exist only when the 
psychometric functions satisfy rather stringent conditions. It is not 
surprising, therefore, that we devote considerable attention to the form of 
these functions. 

3. U N B I A S E D  R E S P O N S E  M O D E L S  

Partly because of historical interest and partly because it is easier to 
begin this way, we first take up models that apply only when the order of 
presentation of the stimuli does not matter. Specifically, we assume that 
for all x ,  y  E 9, such that ( x ,  y ) ,  (y, x )  E s, 

Because in both cases the response designates a particular stimulus, 
namely x,  as larger, it is possible and convenient to speak as if the subject 
had chosen x from the unordered set {x ,  Y )  and to write p(x I ( x ,  y})  for 
the common value of Eq. 11. Usually this notation is simplified further 
by letting p(x, Y) = p(x I {x ,  Y } ) .  
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3.1 T h e  Equat ion of  Comparative Judgment  

In 1927 L. L. Thurstone, in his papers "Psychophysical analysis" and 
"A law of comparative j ~ d g m e n t , " ~  took up Fechner's approach from a 
new point of view, one which has since dominated theoretical work in 
psychophysics and, even more, psychometrics. Unlike Fechner, Thur- 
stone was concerned with why there is any confusion a t  all between two 
stimuli or, to put it another way, why the psychometric function is not a 
simple jump function from 0 to 1 .  This surely is what we would expect if 
repeated presentations of a stimulus always produce the same internal 
effect and if the same decision rule is always applied to  the internal 
information generated by the two stimuli of a presentation. The facts 
being otherwise, these cannot both be correct assunlptions. A varying 
decision rule, although a real possibility, is most distasteful because it 
seems so unmanageable; hence the other assumption is the first t o  be 
abandoned. 

The problem, then, is to develop a model for the information to which 
the simple decision rule is applied. Thurstone postulated that the "in- 
ternal effect" of each stimulus can be summarized by a number, but not 
necessarily the same number each time the stimulus is presented. Al- 
though we need not say why this should happen, plausible reasons exist. 
Undoubtedly there are small uncontrolled variations in the experimental 
conditions as well as some internal to the subject himself which affect the 
appearance of the stimulus. Put in statistical language, the presentation 
of stimulus x is assumed to  result in a random variable X whose range is 
the real numbers. Thurstone called these random variables discrituinal 
processes, their distribution he called the discriminal dispersion in (1927b), 
but in (1927a) he used this term for the standard deviation of the dis- 
tribution and that has come to be the accepted usage. 

I t  should be noticed that this is exactly the same postulate made by 
Tanner and his colleagues when analyzing detection and recognition 
problems (see Chapter 3, Sec. 1 .  I for a more complete discussion of this 
idea). 

Thurstone then assumed the following decision rule: 

larger \ 
Stimulus x is judged 

srnallerj 
than y i j X  (21 Y. (12) 

These papers, along with many others of Thurstone's, have recently been reprinted in 
Thurstone (1959). To some extent, Thurstone's ideas stem from those of Miiller 
(1879), Solomons (1900). and Urban (1907). For other expositions of Thurstone's work, 
see Gulliksen (1946) and Torgerson (1958). 
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Thus the probability that x is judged larger than y is the same as the 
probability that X - Y > 0, that is, 

T o  calculate this, we need to know the distribution of the differences 
X - Y, which quantities Thurstone referred to as discriminal differences. 

T o  get a t  this distribution, we consider the single random variable X. 
We suggested that the range of X is not a unique number because of a 
variety of minor uncontrolled disturbances. If these perturbations are 
independent and random, and if their number is large, then their over-all 
sum will be approximately normally distributed. So we assume that X is 
normally distributed with mean u(x), which Thurstone called the modal 
discriminalprocess, and standard deviation a(x). Similarly, Y is normally 
distributed with mean u(y) and standard deviation a(y). Because z and y 
are usually presented in close spatial and temporal contiguity, it is quite 
possible that the random variables X and Y are c ~ r r e l a t e d ; ~  let the corre- 
lation coefficient be r(x, y). I t  is a well known statistical result that under 
these conditions X - Y is normally distributed with mean u(z)  - u(y) and 
variance a2(r,  y) = a2(x) + a2(y) - 2r(z, y)  a(x)  a(y). Thus, by Eq. 12, 
the form of the psychometric function is 

' S  
[u(x)-zr(y)llu(x,~) 

e-t212 
P ( Z ,  Y )  = -- d t .  

J 2 n  -, 

where N ( p ,  a )  is the normal distribution with mean ,u and standard 
deviation a. 

The question of a correlation between stimulus effects arose a number of times in the 
discussion of detection (see especially Secs. 1, 2 and 6.2 of Chapter 3), and in all cases 
it was handled in one of two extreme ways. When the presentation consisted of the null 
stimulus followed by a tone (both in a background of noise), the correlation was 
assumed to be zero; when it was the null stimulus followed by an increment in a back- 
ground such as a tone, the correlation was assunied to be perfect. One might anticipate 
that we would again postulate a correlation coefficient of one because the two stimuli 
of a discrimination experiment differ on only one physical dimension; however, that 
assumption,coupled with the decision rule given in Eq. 12,leads to perfect discrimination, 
which is contrary to fact. The reason that the assumption of perfect correlation worked 
in the analysis of detection but does not work here lies in the difference between the two 
psychophysical models that are assumed. There we used a threshold (quantal) model, 
whereas here we are assuming a continuous one. Presumably it is possible to develop a 
threshold model for discrimination, and it would be interesting to see how it differs from 
existing models. 
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Note that this model, as it stands, cannot handle the constant-error 
problem, for, when x = y, [u(x) - u(y)]/o(x, y) = 0, and p(x, z) = 4. 
This is because we have supposed that the order of presentation does not 
matter. A generalization that includes biases is given in Sec. 4.1. 

If we let Z(x, y) denote the normal deviate corresponding to  p(x, y), 

that is, p(x, y) = N(0, I), then Eq. 14 can be written 

which is what Thurstone sometimes called the la,z, and sometimes the 
equation of comparatiz;e judgment. Because its status as a law is far from 
certain, we prefer the more neutral word equation. 

We notice, first, that the function u, which gives the means of the random 
variables associated with the stimuli, is a scale of the sort that interested 
Fechner. Second, the equally-often-noticed-difference problem has a 
solution if and only if the variances o(x, y) of the discriminal differences 
are all equal. Third, without some further assumptions, even with com- 
plete pair-comparison data, there are more unknowns than there are 
equations. With k stimuli, there are k - 1 unknown means (fixing one 
arbitrarily determines the zero of the scale), k - 1 unknown variances 
(fixing one sets the unit), and, including the (x ,  x) presentations, k(k + 1)/2 
unknown correlations, but there are only k(k - 1)/2 equations. 

To  cope with this indeterminancy, Thurstone singled out five special 
cases of increasingly strong assumptions, of which Case V is the most 
familiar. It assumes that the discriminal dispersions are all the same, 
02(x) = 19 for a11 x, and that the correlations are all the same (usually 
assumed to be 0), r(x, y) = r. If we choose o = 1/J2(1 - r), as we may 
because it merely determines the unit of our scale, then for Case V the 
equation of comparative judgment, Eq. 15, reduces to just 

Thus the data in the form of the deviates Z(x, y) give the scale when one 
of the scale values is chosen arbitrarily. Of course, the system of equations 
is now overdetermined : it consists of k(k - 1)/2 linear equations in k - 1 
unknowns. I t  is easy to see that this imposes severe internal constraints 
on the data, among them 
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which amounts to saying that, if p ( ~ ,  y) and p(y, z )  are given, then p(x, z )  
is determined. 

Methods for using all the data to determine scale values are described 
in Green (1954), Guilford (1954), and Torgerson (1958), and procedures 
for evaluating the adequacy of the model in Mosteller (1951a,b,c). 

Suppose that the data satisfy the conditions of Case V. If Weber's law 
is true, then by Theorem 4 u must be a logarithmic function of stimulus 
intensity, which suggests plotting the psychometric function as a function 
of the logarithm of intensity. This is frequently done, the independent 
variable being 10 log,, of the relative energy-the so-called decibel (db) 
scale. The data are usually well approximated by a cumulative normal 
distribution, as assumed indirectly by Thurstone and as Fechner suggested 
in his work. The assumption that the psychometric function is a cumulative 
normal of the physical stimulus was referred to as the "phi-gamma 
hypothesis" by Urban (1907. 1910), but, as Boring (1924) pointed out, 
this is not really a hypothesis until the physical measure is specified. 

Thurstone's psychophysical theory is like Fechner's in that an under- 
lying scale plays a crucial role; however, in the general case, the scale 
does not meet the equal-jnd property central to Fechner's work. It is a 
more specific theory than Fechner's in that the form of the psychometric 
function is taken to be a cumulative normal distribution. Finally, in the 
important Case V, in which the two theories overlap, the observed data 
must satisfy the strong constraint given in Eq. 17. 

3.2 The Choice Axiom 

A second approach to these questions of the form of the psychometric 
function and a scale of "sensation" has recently been suggested (Luce, 
1959). The tack is a bit different from Thurstone's in that one begins 
with an assumption about the choice probabilities and from that 
derives a scaling model. This model is extremely similar to that described 
in Sec. 1.2 of Chapter 3. 

So far, we have confined our attention to presentations of stimulus 
pairs; however, it is clear that we can generalize our experiments in 
several ways so that three or more stimuli are presented. Suppose that 
7 cY has k stimuli and that a(T) is a simple ordering of T. Thus 
a(T) E Y x Y x . . . x .Y (k times) and a(T) is a possible presentation of 
k stimuli. By a,(T) we denote the element of T that is in the rth position 
of the k-tuple a(T). If R = {l ,  2, . . . . k], then the identification function, 
which can be stated forlnally if one wishes, simply says that response r 
means that the largest element is believed to have been in the rth position 
of the ordering. 



218 D I S C R I M I N A T I O N  

In this section we are supposing that order of presentation does not 
matter, that is, if o,(T) = o,,'(T) = x, then 

Because the response in both cases designates the same stin~ulus as the 
largest, it is again convenient to speak as if the subject made the choice 
z from the unordered set T and to denote the conlmon value in Eq. 18 by 
pT(z). Note that the basic choice set T is written as a subscript; this is 
done in order to simplify writing other conditional probabilities later. 
To conform to the previous notation, we denote p{,,,,(z) by p(x, y). 

The probability that the subject's choice is an element from the subset 
U G T is given by 

PT(U)  = 1 P T ( . ~ ) .  
X €  U 

The usual probability axioms are assumed to hold for each T. 
The question of empirical interest is what, if any, added relations that 

are not logical consequences of the probability axioms are imposed by 
the organism. One suspects that the probability measure associated with 
the presentation of one set T cannot be totally independent of that 
governing the behavior when sets overlapping T are presented-that the 
organism is unable or unwilling to generate totally unrelated choices in 
two related situations. If there are no such relations, a whole range of 
possible scientific questions has no significance; if there are relations, 
their statement is a piece of a theory of behavior. 

It may well be that, although they exist, these relations are very corn- 
plicated; however, it seems best to begin with the simplest conditions that 
are not completely at variance with known facts. The one suggested by 
Luce and, in another context, by Clarke (1957), states, in essence, that if 
some alternatives are removed from consideration then the relative 
frequency of choices among the remaining alternatives is preserved. Put 
another way, the presence or absence of an alternative is irrelevant to the 
relative probabilities of choice between two other alternatives, although, 
of course, the absolute value of these probabilities will generally be 
affected. To cast this in mathematical language, we need the definition of 
conditional probability, namely 

if pT(U) # 0, then pT(V I U )  = P T ( ~  
V ,  

PT(W 
We assume the following: - 
The Choice Axiom. I f z  E U 5 T and i f p ,  ( z  I U )  exists, [hen 

We first prove Theorem 5 and then discuss its significance. 
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Theorem 5. Suppose that the choice axiom holds for all U, X E  U G T. 

1. q p ~ ( x )  # 0, then pu(x) # 0. 

2. / f p ~ ( x )  = 0 andpT(U) # 0, then p,(x) = 0. 

3. / f p ~ ( y )  = 0 and Y # x, then pT(x) = pT-(,l(z). 
4. /f, for Y E T, ~ T ( Y )  # 0, then pT(x) = pu(x) pT(U).  

P R O O F .  1 .  Because pT(z)  # 0, pT(U)  = pT(x)  + 2 pT(y) # 0. 
z / E U - ( Z ~  

Therefore, the conditional probability pT(2 I U )  = pT(x)/pT(U) is defined, 
and it is not 0 because pT(x) # 0. By the choice axiom, it equals p,(x). 

2. If pT(x) = 0 and pT(U)  # 0, then by the definition of conditional 
probability and by the choice axiom 

3. Because pT(y) = 0, 

= P T ( T )  
= 1. 

Using this, 

= PT(X).  
So, by the choice axiom, 

4. By assumption, p,(y) # 0 for y E U, so pT(U)  # 0, and the choice 
axiom and the definition of conditional probability yield 

Multiplying by pT(U) yields the result. 
What does this tell us?  If we have an  alternative y that is never chosen, 

Part 3 tells us that we may delete it from the set of alternatives. That we 
may keep repeating this process with no concern about the order in which 
it is done until all the choice probabilities are positive is guaranteed by 
Parts I and 2. The final part tells us how the various probabilities are 
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related when we have only positive probabilities. The next theorem makes 
this relation more vivid. 
Theorem 6 .  ,for all x  E T, p T ( x )  # 0 and if the choice axiom holds 

for all x  and U such that x  E U G T, then 

I .  f o r x ,  y, ~ E T ,  

p(., z )  = P ( X ,  Y )  P ( Y ,  2 )  
P ( X ,  Y )  P ( Y ,  2 )  + p(z9 Y )  P ( Y ,  x) 

and 

2. 1 
P T ( X )  = 

1 + 2 P(Y> x ) l p ( x ,  Y ) '  
Y E  T-I21 

PROOF.  We begin by showing that 

P ( X ?  Y )  - P T ( X )  

P(Y> x )  P T ( Y )  
By Part 4 of Theorem 5, 

P T ( ~  = ~ ( 5 ,  Y)PT({x, Y ) )  

= P ( X ,  Y)[PI,(X) + PT(Y)] .  
Rewrite this as 

P T ( X ) [ ~  - P(X,  Y ) ]  = P ( X ,  Y )  ~ T ( Y > ,  
and note thatpfy, x )  = I - p ( x ,  y). By Part 1 of Theorem 5 none of these 
probabilities is 0, so we may cross divide to get the assertion. 

To prove Part 1, we note that 

Substitute p(z ,  x )  = 1 - p ( x ,  z )  and solve for p ( x ,  z )  to get Eq. 19. 
To prove Part 2, consider 

1 =- 
PT(x)  ' 

because P T ( T )  = 1 .  Solve for p T ( x )  to get Eq. 20. 
This excursion con~pleted, let us now see what implications the choice 

axiom has for two-alternative discrimination. First, as with Thurstone's 
Case V, we find that there is a strong constraint on the psychometric 
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functions: if p(x, y) and p(y, z) are known, then p(x, z) is determined by 
Eq. 19. It is obvious that Eq. 19 establishes a relation different from 
Thurstone's Eq. 17, which hints at an experiment to decide between the 
models. Unfortunately, a few calculations show that such an experiment 
is probably not practical. Table 2 presents representative predictions of the 

Table  2 Comparison of Predicted p(x, z )  from Known p(x, y) and  
p(y ,  z )  Using Choice Axiom and  Thurstone's Case V 

p(x, z )  from the choice axiom p(x, z )  from Thurstone's Case V 

two models; the differences are simply not large enough to be detectable 
in practice. Presently, we shall see in another way how similar the two 
models are. 

Part 2 of Theorem 6 suggests a way of introducing a scale into this 
model. To an arbitrary stimulus s assign the scale value r(s) = k, where 
k is some positive number. To any other stin~ulus x assign the value 
U(X) = kp(x, s)/p(s, x). Optimal procedures for estimating these r-scale 
values from data are discussed in Abelson & Bradley (1954), Bradley 
(1954a,b, 1955), Bradley & Terry (1952), Ford (1957). Now, consider 

Using Eq. 19 in the form of Eq. 22, we see that the right side can be replaced 

Substituting this into Eq. 21, we get the basic equation relating choice 
probabilities to the c.-scale: 



In the two-alternative case, this reduces simply to 

A number of authors (Bradley & Terry, 1952; Ford, 1957; Gulliksen, 
1953; Thurstone, 1930) have proposed and studied this model. Now, if 
we define 

u(x) = a log u(x) + a' (25) 
then 

which shows that the choice axiom is a sufficient condition to solve the 
revised Fechner problem. It also shows the form of the psychometric 
function in terms of the Fechnerian scale u; this is known as the logistic 
curve. It is well known that the logistic is quite a good approximation to 
the cumulative normal so again we see the close similarity of this model 
to Thurstone's Case V. 

If the data satisfy the generalized Weber law (Eq. 6) and if C(.rr)/K(n) = 

y ,  then we know by Theorem 4 that 

Thus, solving for z.(r) by eliminating u(x) from Eqs. 25 and 27. we obtain 

where o! and j3 are constants. The former is a free, positive constant, but 
p can be determined as follows. We know that 

if and only if x = y + K(.rr)(?j + y). Thus, 

and 

So, 

p = log [.rr/(l - .rr)l 

log [l + K(n)l 

Note that /3 is a constant independent of .rr and that this equation states 
how K(T) varies with .rr if the model is correct. Typically, for .rr = 0.75, 
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K(T) is in the range for 0.01 to 0.10 (see Table I, p. 205) in which case is 
in the range from 10 to 100. 

I t  should be stressed again that this model, like Thurstone's, has CE = 0, 
for, when x = y, p(x, y) = 4. In Sec. 4.2 a generalized choice model is 
presented in which nonzero CE's are possible. 

3.3 Semiorders 

The notion of a jnd, introduced in Sec. 1.2, is a summary of some of the 
information included in the psychometric function. I t  is an algebraic 
rather than probabilistic notion. Although nothing was said then about 
properties it might exhibit as an algebraic entity, they are of interest 
whether jnds are treated as behavioral data in their own right or as simple 
approximations to  the psychometric functions. 

One way to state such properties is to introduce two binary relations, 
their "boundary" coinciding with the notion o f a  n-jnd. For T, 3 < T < 1, 
define 

x L ( ~ ) y  if and only if p(x, y) > T 

. z l ( ~ ) y  if and only if 1 - T < p(x, y) < T, 
(28) 

where L is used to suggest "larger" and I, "indifference." If x L ( ~ ) y ,  then 
x is more than one T-jnd larger than y, and, if x l ( ~ ) y .  then x is less than 
or equal to one T-jnd from !I .  

On a priori grounds, Luce (1956) suggested that such relations might 
satisfy the following axiom system: 
A pair of binary relations I(T) and L(n) 0z.er.Y form a semiordering of Y 

if for all 2, y, z ,  and M. E 9: 

1. e ~ a c t l y  one of x l ( ~ ) y ,  x L ( ~ ) y ,  or yL(~) . r  holds; 
2. rI(7T)x; 
3. u.11en x L ( ~ ) y ,  y l ( ~ ) z ,  and zL(~)n. ,  then x L ( ~ ) u ;  
4. 11.11en .rL(T)y and yL(T)r, then not both .c I (~)u.  and ~i.l(x)z 

Some of the main features of a semiorder are much like those of a weak 
order: L(T) is transitiveand asymmetric and I(T) is reflexive and symmetric. 
The important difference is that I(T) need not be transitive. It is con- 
strained, however. by Axioms 3 and 4 to have the feature that an in- 
difference interval can never "span" a larger-than interval. For other 
discussions of semiorders, including an axiomatization in terms of the 
single relation L, see Scott & Suppes (1958), Gerlach (1957). and Sec. 3.2 
of Chapter 1. 

In Luce (1959) it is shown that if the probabilities satisfy the choice 
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model, then L(n)  and I(n) as defined in Eq. 28 form a semiordering of 9. 
We shall not reproduce the proof here. Rather, we shall show that the 
same is true for Thurstone's Case V model. Let Z(n )  be defined by 

Z(n) .=Irn N(0, I), where N(0, 1) is the normal distribution with zero mean 

and unit variance. By Eqs. 14 and 28, 

xL(n)y if and only if u(x) - u(y) > oZ(x)  

xI(n)y if and only if -oZ(n) < u(x) - u(y) < oZ(n). 

It is obvious that properties 1 and 2 of a semiorder are met. If xL(n)y, 
yI(n)z, and zL(n)w, then u(x) - u(y) > oZ(n), u(y) - u(z) > -aZ(n),  
and u(z) - u(w) > uZ(n). So u(x) - u(M') = U ( X )  - ~ ( y )  + ~ ( y )  - U ( Z )  + 
u(z) - U ( W )  > uZ(n) - oZ(n) + oZ(n) = oZ(n), which implies rL(n)w. 
Thus condition 3 is met. Suppose condition 4 is false, that is, for some 
x, y, z, w E 9, xL(n)y, yL(n)z, xl(n)w, and wl(n)z, then u(x) - u(y) > 
uZ(n) and u(y) - u(z) > oZ(n) imply u(r) - ~ ( z )  > 2oZ(n). But u(x) - 
U ( W )  < oZ(n) and u(w) - u(z) < oZ(n) imply u(x) - u(z) < 2oZ(n). 
This contradiction shows that condition 4 is met. 

For the more general Thurstone models, the relations defined by Eqs. 
28 need not satisfy the semiorder axioms. 

4. B I A S E D  R E S P O N S E  M O D E L S  

It is a curious historical fact that the CE has not received nearly the 
attention that the jnd has. Possibly, this is because the jnd is, in fact, a 
measure of discriniinability, whereas, from the point of view of one 
interested in discrimination, the CE is after all a nuisance factor-albeit 
an ubiquitous one. Moreover, because psychologists have by their 
designs and procedures tried to achieve maximum discriminability and 
have not been concerned how the jnd varies with experimental manipula- 
tions, there has really been 01i1y the single question: how does the jnd 
depend upon the physical measures of the stimuli under study? With the 
CE, matters are not so simple, and in the past interest seems not to have 
been great. In the last few years, however, theorists have begun to  give 
it more attention, and we anticipate increased experimental interest. There 
is, for example, the result of Eq. 7 in Sec. 1.4, which suggests that the CE 
may follow Weber's generalized law when the jnd does; this needs to  be 
tested, but more interesting are questions that can be raised about the 
impact of payoffs and other experimental variables on the CE (see Sec. 
4.3). As early as 1920, Thompson discussed this problem, but evidently 
this did not lead to empirical research. Boring (1920) expressed the 
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attitude of the time that these are matters for experimental control, not 
investigation. 

Whether or not we study the CE as such, its mere existence shows that 
the two response models just discussed cannot be correct and suggests that 
we introduce response biases in some fashion. We now look into this 
question. 

4.1 T h e  Equation o f  Comparative Judgment 

The most obvious way to introduce response biases into Thurstone's 
model is to modify the decision rule, Eq. 12. We d o  so as follows: 

When (x, y) is presented, the jirst stirnultrs, x, is judged 

the secorld, y, if X Y + c, where c is some positive or negatire 

nurnber. (29) 

With this rule, we have, as before, 

where N(p, a) is the normal distribution with mean p and standard 
deviation a. This modification of Thurstone's model was first suggested 
by Harris (1957). (If we had simply assumed an additive bias so that the 
mean of the effect of stimulus x is u(x) + a(1) when x is presented first 
and u(x) + a(2) when it is presented second, then setting c = a(2) - a(1) 
yields Eq. 30. As we shall see in Eq. 32, this means that the way biases 
are introduced into the choice model is substantially the same as this 
way of introducing them into Thurstone's model, except for a logarithmic 
transformation.) 

Consider a pair-comparison design involving k stimuli. The unknowns 
are c, the k means u(x), the k standard deviations, a(k), and the k(k + 1)/2 
correlations, r(r, y), a total of 1 + k + k + k(k + 1)/2 = 1 + k(k + 5)/2 
variables. If we set one of the means equal to 0 and one of the standard 
deviations equal to 1, which only fixes the zero and unit of the scale, this 
reduces the number of unknowns to k(k + 5)/2 - 1 .  There are, of course, 
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k2 equations. The number of unknowns is easily seen to be less than or 
equal to the number of equations for k 5 ,  and if we are willing to 
introduce the constraints of the form 

as assumptions rather than use them to test the model then the minimum 
number of stimuli needed to estimate the parameters is reduced to 4. 

Thus, introducing the cutoff c not only makes the model more realistic 
but, in principle, a t  least, renders the model determinant, which we recall 
it was not in Thurstone's original formulation. Just how to solve for the 
unknowns appears, however, to be an  extremely formidable problem, 
involving as it does 25  unknowns in 25  nonlinear equations. 

Certain special cases are amenable to solution and, as in Thurstone's 
work, may serve as useful first approximations. For example, suppose 
r(x, y) = 0 for all x and y. For some particular stimulus s, we may 
arbitrarily set u(s) = 0 and o(s) = I/%/?, and equating the relative 
frequencies of choices to  the theoretical probabilities we estimate c from 

With i: so determined, we estimate o(x) from 

Finally, with t and $(x) known for all x, we estimate u(x) - u(y) from 

There are various internal checks on the adequacy of the model, including 
the two estimates of u(x) - u(y) from p(l 1 (x, y)) and from p ( l  I (y, x)) 
and the additivity condition on triples of stimuli mentioned earlier. 

As far as we know, no empirical research has been carried out using 
this generalization of the Thurstone model in the context of discrimination, 
although for a similar model in detection there are considerable data (see 
Chapter 3). 

It follows immediately from Eq. 3 0  that p ( l  I (s, x ~ ) )  = 4 if and only 
if u(s) - u(x%) - c = 0. If we suppose that Fechner's law is correct so 
that ,u(s) = A  log (s + y) + B and define b so that c = - A  log b, then 

implies x% = b(s + y) - y. Thus, CE = XU - s = (b - l)(s + y), 
which again 1s the generalized Weber law for the CE. 
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4.2 A Choice Model 

A generalization of the unbiased choice model (Sec. 3.2), but not of the 
choice axiom itself, was described by Luce (1959). Although the argument 
leading to the model is somewhat indirect and to some people not entirely 
satisfactory, the model itself is easily stated. Let s = (dl ,  J,, . . . , A,) 

E S,  where a, E 9, and R = {I, 2, . . . , k}, then there are two numerical 
ratio scales 

q : Y -+ positive reals 

b : R + positive reals 
such that 

This representation is closely similar to that given in Eq. 24, except that 
now the order of presentation of the stimuli matters. Both the stimulus 
and the response used to designate it contribute multiplicatively and 
independently to the response probability in Eq. 31. It is appropriate to 
think of q ( ~ )  as a stimulus parameter associated with stimulus A, which 
is independent of the response used to designate it, and to think of b(r) as 
a response parameter, or bias, associated with the response, which is 
independent of the stimulus to which the response refers. If there is no 
differential tendency to use the responses, that is, if b(r) is a constant 
independent of r E R, then the b terms drop out and Eq. 31 reduces to 
Eq. 24. 

This representation is also similar to the choice model for complete 
identification experiments described in Sec. 1.2 of Chapter 3. The only 
formal difference is that the stimulus parameters here depend upon single 
stimuli, whereas there they depend upon pairs of stimuli. This difference 
may well be more apparent than real, as we shall see shortly. 

One way to arrive at Eq. 31 is via a learning argument similar to that 
given in Sec. 1.2 of Chapter 3 (see Bush, Luce, & Rose, 1963). Consider 
the special but important design in which Y has k elements and each 
presentation includes every element of Y. Put another way, the presenta- 
tions are just orderings of Y .  Let A* E Y denote the "correct" element- 
the one meeting the discriminative criterion. In terms of the identification 
function, i(r) = (s I A, = A*}. Suppose that s' is presented and s' E i(rf); 
then the response probabilities are assumed to be transformed linearly by 
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As in the complete identification situation, 19 is a basic learning rate 
parameter associated with the correct response and q is a generalization 
parameter. Note that by our assumptions the generalization is not between 
presentations but between the stimuli corresponding to thecorrectresponse, 
one of these stimuli, of course, being A*. 

Paralleling the argument used in Sec. 1.2 of Chapter 3, it is easy to show 
that 

where b(r) = P(r) 19(r), and P(r) denotes the a priori probability that r is 
the correct response, that is, P(r) is the sum of all the presentation proba- 
bilities P(s) for which s E r(r). This equation has the same form as Eq. 3 1, 
except that q(a-,) is replaced by q(a-,, A*). Because a-* is fixed throughout, 
this is a purely notational difference. Thus, the discrimination choice 
model for at least this special case is not as different from the complete 
identification model as it first seems. 

If one does not assume that the presentations are orderings of Y,  then 
different stimuli are correct for different presentations and matters are 
more complicated. In particular, the asymptotic form is not Eq. 31, and 
so, for example, the analysis of the method of constant stimuli given below 
in terms of Eq. 31 may very well be wrong. 

It is not difficult to see that Eq. 31 implies: for any s, s' E S and any 
r, r', r" E R such that a-, = A,', then [p(r I s)/p(rV ( s)][p(rl I s')/p(rt 1 st)] 
is a function of only r, r', A,., and a-:.. It has been shown that this 
property, which involves only observable quantities, is in fact equivalent 
to Eq. 31 (Luce, 1962). 

The empirical adequacy of Eq. 31 is readily tested because the number of 
parameters increases linearly with the number of stimuli used and with the 
number of response categories, whereas the number of probabilities to be 
accounted for increases much more rapidly. For example, if three stimuli 
are used, they may be presented in six different orders when the subject is 
to  select one out of three and also in six ordered pairs when he is to select 
one out of two, yielding a total of 18 independent conditional probabilities. 
Because we can, and must, arbitrarily choose the unit of the q and b 
scales in Eq. 31, there are two, not three, stimulus parameters and, 
assuming different biases in the two- and three-choice situations, a total 
of three bias parameters. So there are 18 - 5 = 13 degrees of freedom 
even in this simple situation. 

Such an experiment was performed on lifted weights by Shipley and Luce 
(1963) and on visual brightness by van Laer (undated). As an example of 
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Fig. 10. Observed versus expected proportions predicted by the choice model for lifted 
weight data collected under two procedures. I n  one, each of the six orderings of three 
weights plus three repetitions of the intermediate weight were presented 400 times. In the 
other, each of the six orderings of two of the three weights plus two repetitions of the 
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intermediate weight were presented 400 times. Stimulus and bias parameters were 
estimated from the data for each condition using a technique suggested in Luce (1959). 
The geometric means of the two estimates ofthe stimulus parameters were used to calculate 
the expected proportions. For this subject, x2 = 24.00, df - 16, and 0.05 < p < 0.10. 
These data were collected by Shipleg. and Luce (1963). 
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the adequacy of the model, Fig. 10 shows the predicted versus observed 
proportions for one subject in the weight-lifting experiment. 

Consider, now, the method of constant stimuli, where the standard 
stimulus s is presented first, the comparison x, second, and the response 
categories are 1 and 2. Then 

.O 
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where b = b(l)/b(2).  If we let u(s) = a log ~ ( s )  + a' and c = -a log b, 
then it is easy to see that Eq. 32 can be rewritten in the logistic form 

1 
p(1 I ( s ,  x ) )  = 

1 + exp ( [ u ( x )  - 4 . 7 )  + clln) ' 

Questions of estimating the parameters a and c from data are discussed in 
Chapter 8. 

By setting p(l I (s ,  xLg) )  = p(2 I (s, z % ) )  = b, it is easy to see that 
7 ( ~ ! ~ )  = by(s). If the 7-scale is a power function, ~ ( x )  = a(x + y ) p ,  
then 

xi4 = bl'"s + y )  - y,  
SO 

CE = 2 ; g  - s = (bl"-  I ) ( s  + y) ,  

which is again the generalized Weber law for the CE. A similar calculation 
with p[2 I (s ,  s+ A(s, T ) ) ]  = 7r yields 

and so 
7r-jnd = ($)[A(,, 7r) - A(s,  1 - T ) ]  

which is a generalized Weber law. 

Note that both the CE and the jnd depend upon the factor bllP but that 
the jnd also depends upon a factor involving only P, namely [7r/(l - 7r)111@ 

+ [(l - 7r)/7r]l1" It is really only the second term that measures discrim- 
inability if this model is correct. This suggests considering the quantity 

as a measure of discrimination rather than the Weber fraction jnd/(s + y),  
which depends upon b. 

4.3 Payoffs 

Little or no experimental work has been carried out to determine the 
effects of payoffs in discrimination designs. Some workers have used 
symmetric payoff matrices in an attempt to motivate the subjects to reduce 
the size of the jnd, but in contrast to the extensive use of payoffs to 
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manipulate the response probabilities in detection research, the effects of 
payoffs upon the psychometric function have not been investigated. It 
is difficult not to believe that analogous manipulations are possible and 
that, in particular, the magnitude and sign of the CE are a function of the 
payoffs used. All we can do at present is to carry out some theoretical 
calculations, which we do for the choice model. The parallel calculations 
for the Thurstone model are possible, but they are somewhat messier in 
detail. 

Suppose we consider a constant stimulus experiment with the standard 
s and variable stimuli x - ~  < x - ~ . , ~  < . . . < x-, < s < xl < . . . < xk_,  
< x,. Suppose that each presentation (s ,  xi) ,  i = 0, f I, . . . , f k ,  where 
s = x,, occurs equally often, that is, with probability 1/(2k + 1). The 
subject is to say whether the first or second stimulus is larger, and after 
each trial he is paid off according to the following monetary payoff 
matrix : 

1 2  

Relation between xi < s 

Stimuli in the xi = s 

Presentation xi > s opz )  , 

where o,, > o,, and o,, > o,,. 
The expected monetary return on a typical trial is 

If the choice model is correct, then Eq. 32 applies. Writing y, for y(s)/y(x,) ,  
we see that 

+i [" P+ qi + b,, 0 ~ ~ 1 1  
Assuming that the subject selects the value of the bias parameter to maxi- 
mize E(o), we calculate the derivative of E(o) with respect to b and set it 
equal to 0 :  
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If the payoff matrix is symmetric in the sense that oll = o,, and o,, = o,,, 
then 

In general this equation is satisfied only if b # 1. Thus, even with 
symmetric payoffs, a bias may be needed to optimize the expected payoff. 
An important exception is when the stimuli are located symmetrically 
around s in the sense that qpi = 1/qi or in terms of log 7 when log s - 
log ~(x-,)  = log ~ ( x , )  - logs. If this is so and if b = I, then 

and so Eq. 34 is satisfied. 
When the pairs are not presented equally often, when the oii must be 

treated as utilities that are nonlinear with money so that the payoff 
matrix is not really symmetric even if the money outcomes are, or when 
the stimuli are not symmetric about the standard in the sense that 
q(xp2)/r(s) = r(s)/r(x,), in all these cases the expected payoff is a maximum 
only if a bias is introduced. Thus it may not be surprising that we so often 
find nonzero CE's. The empirical question remains whether or not the 
CE varies as predicted when we use different payoff matrices. It should 
not be forgotten that some detection studies cast doubt upon the maximiza- 
tion-of-expected-value model, and, if it is inadequate there, probably it is 
inadequate here as well. 

5. U N O R D E R E D  DISCRIMINATION 

The responses used in what we may call an unordered discrimination 
experiment are like those ordinarily used when speaking of discrimination. 
The subject simply reports whether he believes the pair of stimuli presented 
to be different, without specifying just how they differ. Aside from its 
more specific responses, any forced-choice discrimination design is equally 
suited to the study of unordered discrimination, but the converse is not 
true. Same-different responses make sense for many pairs of stimuli for 
which larger-smaller judgments are meaningless: for example, color 
patches that differ in hue, brightness, and saturation or, more generally, 
any stimuli that differ on two or more physical variables. In this section 
we shall look into models that have been proposed for studies of this type. 
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5.1 The Matching Experiment 

In what we call a matching experiment, the set Y of stimuli can be 
anything that we can control with an acceptable error. Because they need 
not be physically ordered, as in the forced-choice discrimination design, 
a whole new range of possibilities opens up, including stimuli that we 
cannot easily characterize in detail as physical objects: photographs, 
samples of handwriting, patches of textured material, etc. 

The set S of stimulus presentations is usually a subset of Y x 9'. 
although the possibility of presenting k-tuples of stimuli certainly exists. 
Because all existing research concerns pairs, we shall confine our attention 
to them. As with forced-choice discrimination, we can use either the 
method of pair comparisons, where S = Y x Y,  or methods (e.g., 
constant stimuli) in which S is a proper subset of Y x Y. 

The response set R consists of two elements, "match" and "not match," 
"same" and "different," or some equivalent terms, which we denote by 
M and R, respectively. 

To get at the identification function, we must first consider ways in 
which terms such as "same" and "different" might be used, for there is an 
inherent ambiguity in their meanings. Certainly when a subject says two 
stimuli are the same he cannot mean that they are strictly the same in all 
respects, for two things cannot occur in the same place at  the same time 
and still be designated by the subject. Just how much "sameness" is 
required differs from study to study, ranging from the stringent demand 
that the two stimuli be identical in all measurable aspects, except for their 
space-time location, to the weaker requirement that they be the same with 
respect to some one physical measure, such as sound energy, to the 
considerably weaker request that they be of the same "subjective loudness." 
The last of these examples differs from the other two in that the experi- 
menter has no independent measure with which to decide whether the 
subject's response is correct or incorrect; that is, there is no identification 
function. 

We shall confine our attention to stimuli such that there is an equivalence 
relation N defined over them in terms of their physical properties. In 
some experiments it may denote identity; in others, equivalence with 
respect to sound energy or the like. This defines the partition 

I,, (S) = {(z, y )  I (x, y )  E S and x N Y) 

1217 (S)  = s - I.,l(S), 
hence the identification function is 

L(M) = I d s )  
L(M) = IAG(S). 
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We shall suppose that the payoff matrix is compatible with the identifica- 
tion function in the sense that for (x, y) E S, it is 

Response 
M A 7  

X" Y roll 0 1 2 1  

not (x - y) Lo21 0 2 2 1  , 
where o,, > o,, and o,, > o,,. 

The final ingredient in the design of a matching experiment is the 
schedule that assigns a presentation to  each trial. As is customary in most 
of psychophysics, the assignment is random ; however, equal probabilities 
for the several presentations are not generally used. The reason is simple. 
In a pair-comparison design with 10 stimuli and a criterion of strict 
identity there are 10 presentations, the (x, x) ones, for which "match" is 
the correct response, and 90 for which it is wrong. Thus, if the presenta- 
tions were equiprobable, the subject would be wise to bias his responses 
strongly, possibly exclusively, to "not match." T o  avoid this bias, one 
can either increase the frequency of the (x, x) presentations, decrease the 
number of different (x, y) pairs presented, o r  use some mixture of these 
two that results in each response being correct halfthetime. If the outcomes 
are money and symmetric in the sense that oll = -o,, = -oZl = o,, 
and the subject responds entirely at  random, then his expected outcome 
is zero for such schedules. 

5.2 A Thurstonian Model 

As far as we know, no probability model has been stated in the literature 
for the matching experiment. We do not see how to extend the choice 
model to  unordered discrimination, but as it is easy to do so for the 
Thurstone model, we include that. 

As in the forced-choice discrimination model, we suppose that to each 
stimulus x E Y there is a random variable X assuming values on the real 
line; it is again interpreted as the momentary effect of the presentation of 
x. We assume that X is normally distributed with mean u(x) and standard 
deviation o(x) and that, when x and y are presented successively, the 
correlation between X and Y is r(x, y) .  In forced-choice discrimination the 
choice between x and IJ was made by comparing X - Y with some fixed 
cutoff c (Sec. 4.1). Here the decision is between saying that the stimuli 
are the same or that they are different, and the plausible decision rule is 
that the subject selects two cutoffs, - c  and d,  where - c  < d, and that 

he rvsponds (g) i f  ( - c < X - Y < d  
otherwise 
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In other words, if the effects are sufficiently close, he says the stimuli do  
not differ; otherwise, he says they do. 

Because the distribution of the difference X - Y is normal, with mean 
u(.r) - u(y )  and standard deviation, 

the decision rule yields the representation 

where N ( p ,  a )  denotes the normal distribution with mean p and standard 
deviation a .  

Note that the often assumed, but probably incorrect, property of 
response symmetry p(M I ( x ,  y ) )  = p(M I ( y ,  x ) )  is equivalent to d = c. 

An equations-and-unknowns count similar to that carried out in Sec. 
4.1 yields the same number of equations and one more unknown, still 
leaving five as the smallest number of stimuli for which the number of 
equations is not less than the number of unknowns. Again, nothing is 
known about solving this general case. 

Previously we were able to solve the special case r (x ,  y)  = 0, for all x 
- 

and y,  by setting u(s) = 0 and a ( s )  = 1/42.  Doing this here, we obtain 
from Eq. 36 

which is a system of four equations in four unknowns, c, d, u(x),  and 
a(x) .  Although we do  not know how to solve this system, mainly because 
there are two unknowns-c and d-in the first equation, a t  least the 
number is sufficiently small so that one can hope that usable techniques 
for calculating the solutions can be found. 

If we assume both r(x, y) = 0, for all x and y, and that d = c, then 
solutions are easy to find : 
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determines c, 

determines o(x) .  a similar equation determines o(y ) ,  and 

determines u(x )  - u(y) .  
To get some idea about the effects of payoffs in this model, consider the 

simplest experiment and the simplest model. The experiment involves the 
presentation of either (s, s )  with probability P or (s, s t )  with probability 
1 - P, and the payoff matrix is 

Response 
M R  

Stimulus 
Presentation 

Thus the expected outcome is 

where 
1 - P o,, - o,, 

@ = (7 1 /oil - OJ . 
The model is the one just stated in which d = c, with the added assumption 
that all of the variances are equal. so that the variance of the difference 
distribution may be taken to be 1. Differentiating E(o )  with respect to c 
and setting that equal to zero yields 

( -  [L I [S )  - u ( s f )  - cI2 
= 2 exp ($) - p  (erp , 

2 

x erp /+2) cosh [u(s)  - u(sr ) lc  

1- [ll(.S) - 11(s1)]7 

\ I cosh [u(s)  - u(sf ) ]c  
2 
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cosh [u(s) - u(sl)]c = 

This last equation, which determines c, depends not only upon the 
payoff conditions through the parameter /I but also on the spacing of the 
stimuli u(s) - u(sl). In more complicated experiments the dependence 
upon the spacing of the stimuli remains but is, of course, more complex. 
It is evident from these considerations that the subject's definition of the 
match category is highly sensitive to the distribution of the stimuli, and one 
would guess that it is likely to be unstable in a given experiment unless the 
subject is well practiced. This may well be the theoretical counterpart of 
the empirical observation that indifference categories are very tricky to 
use and that, on the whole, it is better in discrimination work to use 
forced-choice procedures. (See Sec. 7.1 of Chapter 3 for a caution about 
extending this recommendation outside discrimination work.) 

It appears that a series of experiments needs to be performed on the 
same subjects and with the same stimuli in which both forced-choice and 
unordered discrimination designs are used and the payoffs varied. The 
data should then be analyzed in terms of the Thurstonian models which, 
if they are correct, will yield approximately the same estimates of u and o 
froni all conditions. If that is verified, then the dependence of the cutoffs 
on the payoffs should be investigated, for maximization of expected money 
is not obviously the correct decision mechanism. 

5.3 An Algebraic Model 

In Chapter X of The Structure ofAppearance Goodman (195 1) presented 
an algebraic model for unordered discrimination. This model was later 
restated in slightly modified form and applied to data in visual psycho- 
physics by Galanter (1956). Both presentations used the language of 
symbolic logic; we restate it in set terminology. 

Goodman's work was not motivated by psychophysics, as such, but 
by philosophical considerations. To what extent can an ordering of 
stimuli be constructed from what in Goodman's view is the most primitive 
observing response: matching? The criticisms we are forced to make of 
Goodman's model considered as a possible description of behavior may 
very well not be appropriate when it is considered as a philosophical 
contribution. 

Suppose that when two stimuli s and st are presented the subject says 
either that they match (are the same) or that they do not and that he is 



D I S C R I M I N A T I O N  

1 I I I I I 
i - d  i + k - d  i i + k  i + d  i + k + d  

Fig. 11. Manors ofstimuli thal can be represented as points on a line. 

consistent in his reports. Thus his behavior may be summarized as a 
matching relation M over 9. In terms of a probability model, this is the 
same as supposing that all of the probabilities are either 0 or  1. By 
analogy to the probability models, we might suppose that there is a distance 
measure d(s, s') [paralleling, e.g., u(s) - u(sl) in the Thurstone models] 
and a criterion d such that the decision rule is 

sMs' f and only f d(s, s') < d. (37) 

Accepting the heuristic argument, it follows immediately that M is a 
reflexive and symmetric relation but is not, in general, transitive. Goodman 
assumes that M is reflexive and symmetric. 

Now, suppose that instead of working with a sample of stimuli we have 
all possible stimuli of a given type, such as all 1000-cps tones of different 
intensities; suppose that the world is discrete in the sense that there is 
only a finite number of different stimuli, and suppose that they are ordered 
psychologically s, < s, < . . . < s,,. Because these are supposed to be 
the only stimuli, the simplest possible distance measure is the number of 
intervening stimuli plus one: d(si, si) = ( j  - i ( .  If this is so and Eq. 37 is 
the decision rule, then there is a simple way to discover the distances 
between pairs of stimuli. We define the manor of stimulus s to be the set 
of stimuli M(s) = Is' I sMsl).  For stimuli si and sitk. where s , M s ~ + ~ ,  
that is, where k < d, the manors are shown in Fig. 11. If N ( X )  denotes 
the number of elements in a set X. then we see that 

N[M(s,)  - M(s ,+~) ]  = ( i  + k - d )  - ( i  - d )  = k,  
and 

N [ M ( s , + ~ )  - M(s,)] = ( i  + k + d )  - ( i  + d )  = k ,  

hence 

that is, the distance is one half the number of elements in the symmetric 
difference of the manors of the two stimuli. 
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Having the notion of distance given in Eq. 38, Goodman suggested that 
it can be used to  reconstruct the ordering of the stimuli using the following 
three definitions : 

1 .  I f s ,  s', and s" E Y are all dzferent and sMsf ,  sfMs",  and sMsU, then s f  
is between s and s" if and only if d(s, s") > d(s, s') and d(s, s") > 
d(sl, s"), where d is defined by Eq. 38. 

2. Stimulus s is said to be beside sf  if and only i f s  # s', sMs', and no s" 
exists between s and s'. 

3. A finite set of stimuli ozler which a repexice and symmetric relation M 
is defined form a linear array if two of the stimuli are each beside just 
one other stimulus and all others are beside e.uactly two others. 

I t  seems to us that for the empirical scientist this scheme to organize 
stimuli into linear arrays has a fatal flaw. The scheme rests crucially upon 
the assumption that one has all possible stimuli, for only in that case does 
Eq. - 9  give the underlying distance measure. When subsets of stimuli 
are used, as must be the case in practice, Eq. 38 does not define an invariant 
distance measure. Thus there may be arrays that are nonlinear by Good- 
man's definition which h~ave subsets that are linear. An example is shown 
in Fig. 12. In the basic underlying two-dimensional grid each point 
matches itself and each adjacent point in its row and column. This array 
is clearly nonlinear, but the subset of darkened points and lines forms a 
linear array in Goodman's sense. 

The results given below regarding Goodman's definition of a lin- 
ear array are of interest. Suppose that by his method a set of stimuli 
form a linear array, ordered s, < s, < . . . < s,,. Assume, in addition to  

Fig. 12. An example of a nonlinear array having a subset which is linear. 
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reflexiveness and symmetry, that M satisfies this condition which follows , 

from the basic decision rule: 
W e a k  Mapping Assumption. If si < s j  < s,  < s ,  and s,hfs,,  then 

sjMs,. 
Suppose we define the distance measure d(s,, s j )  = I j - il. I t  should be 

noted that in general this definition of distance differs from that given by 
Eq. 38, which is the one used to organize the stimuli into a linear array. 

Three concepts are now introduced. The first is, essentially, the decision 
rule we have been assuming, but applied to the distance 6. 

1 .  A linear array is uniform provided that a number 6 can be found such 
that sMs' i f and  only i f 6 ( s ,  s') < 6. 

2. A linear array is regular provided that when sMs' and 6(t,  t ' )  < 6(s, s') 
then t M t  '. 

3. In a linear array s is just noticeably different from s f ,  denoted sJs', 
if not sMs' and there exists an s" such that s" is beside s and s"Msl. 

Fine (1954) has proved the following theorem: 
Theorem 7. I f  a linear array satis$es the weak mapping assumption, 

then the follo~.ing are equivalent: ( I )  it is uniform, (2)  it is regular, and 
(3)  sJs' implies s'Js. 
In a later paper Fine and Harrop (1957) showed that it is always possible 

to embed a linear array that satisfies the weak mapping assumption into 
a uniform linear array. The motive for proving this is, evidently, to show 
that we can always consider the set of stimuli actually used as a subset of 
a set of stimuli for which the decision rule (Eq.  37) holds. I t  does not, 
however, overcome the lack of invariance in Goodman's scheme for 
arranging the stimuli into an  array in the first place. 

6. CONCLUSIONS 

It came as a surprise to us when preparing this chapter, as it may have 
to the reader, that in spite of a long history of experimental work on 
discrimination there are relatively few data available that are suitable to 
test existing mathematical theories. This is in striking contrast to the 
abundance of detection and recognition data that have been collected 
specifically to test and guide the recent flurry of theoretical research in 
that area. I t  is evident that a program of empirical work needs to be 
developed to parallel that now under way on detection. 

Although there are currently three different response theories in the 
detection studies, only two have been worked out for discrimination. We 
are at  present totally lacking a true threshold theory of discrimination. 
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As in the detection work, the most fully developed theories establish 
relations among response probabilities. Each of these theories defines 
numerical parameters, some of which are thought to be stimulus-deter- 
mined and others, response biases. Adequate theories are still lacking to 
account for how these depend, respectively, upon the stimulus measures 
and upon payoffs, presentation probabilities, and the like. I t  is clear that 
much work needs to be done, especially on the way in which the response 
biases are determined. The possibility of treating the biases as the end 
product of a learning process, as was done with the choice and threshold 
models in detection, needs investigation. 
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